GENERAL - (SEE FIGURE 1)

BA716 and 717 are fixed together to form a sandwich assembly mounted near the centre of the channel or rev modules. A single 16 way flying flatcable connector connects BA716 to a header on BA740.
BA716/717 form a four band fully variable (parametric) equaliser which may be switched into the Channel or Mixdown signal paths. The high frequency and low frequency bands may be switched from a peaking to a shelving characteristic.. When used in a Rev module the EQ may be switched into the Rev Send path (or Delay Insertion path if "INS" button on BA752 is pressed) or the Rev Return path.
USER CONTROLS
Frequency controls : one per band, marked $30 \mathrm{~Hz}-300 \mathrm{~Hz}$; $200 \mathrm{~Hz}-2 \mathrm{kHz}$; $0.8 \mathrm{kHz}-8 \mathrm{kHz} ; 1.5 \mathrm{kHz}-15 \mathrm{kHz}$. Set band centre frequencies.
Boost/Cut controls : one per band, marked LOW, MID 1, MID 2, HIGH. Set band boost or cut over range $\pm 18 \mathrm{~dB}$.

" Ј-" button	: When out, low band response is bell shaped. When in lowband response is shelving.
" - С " button	When out, high band response is bell shaped. When in high band response is shelving.
"CH" button	: When out, EQ is available in the Mixdown path. When in, $E Q$ is available in the channel path.
"IN" button	When out, $E Q$ is bypassed. When in, $E Q$ is inserted in the signal path.

NOTE: As with all parametric equalisers, a certain amount of overlap of frequency ranges is provided. Careless use can thus result in ridiculously high gains at certain frequencies which may cause oscillation.

DETAIL
See ET10209 (circuit diagram), EB2O364 (channel module block diagram), and figure 1.

The BA716/717 parametric equaliser may be considered to consist of five separate sections, each of which is physically split between the two printed circuit boards:
a) In/Out switching and LED indicator switching

b) | Low band EQ section |
| :--- |
| c) |
| Mid 1 band EQ section |
| d) |
| e) Mid 2 band EQ section |
| High band EQ section |

All the EQ sections are connected in series.

INPUT/OUTPUT AND LED SWITCHING

Switch S1 ("CH") on BAT17 and S2 ("IN") on BAT16 enable the equaliser to be switched into either the Channel or the Mixdown signal paths, and to be either in circuit or bypassed. One pole of each switch is used to switch LEDS mounted remotely on BA740. ICl on BATI6 is a non-inverting buffer amplifier.

LOW BAND EQ SECTION

BA717 : ICl amplifiers a, b, and c, form a Two-Integrator loop filter whose frequency is tuned by RVI $(30 \mathrm{~Hz}-300 \mathrm{~Hz})$. The filter has a fixed " Q " of 1 and its input is provided by IC2a on BA716. Two outputs are taken from the filter to a summing amplifier ICld, one filter output and ICld output then going to the shelving switch (Sl on BA716).

BA716 : IC2b is used as an inverting summing amplifier to combine the filter output, selected by $S l$ with the input signal from ICl buffer. RVI devices a voltage which is somewhere between the full input signal (fully clockwise, full boost) and the full inverted and summed output of IC2b (fully anticlockwise, full cut). The output of RVI is amplified by IC2a and is the input for the filter on BA717. Low band EQ section output is taken from IC2b, and is the inp. for the Mid 1 EQ section (IC2d etc).

MID 1 BAND EQ SECTION

BA717 : IC2a and d form a modified Two Integrator loop giving only a second order bandpass output from IC2d. The " Q " of this filter is 2 and centre frequency set by RV2 $(200 \mathrm{~Hz}-2 \mathrm{kHz})$. Filter input is received from IC2c on BA716, and bandpass output sent to IC2d on BA716.

BA716 : IC2d is used to invert the Mid 1 EQ sections input signal, (from IC2b the lowpass EQ sections output) and add to it the bandpass filter output received from IC2d on BA717. RV2 derives a voltage which is somewhere between full input signal (fully clockwise, full boost) and full filter output minus input signal (fully anticlockwise, full cut). The output of RV2 is buffered by IC2c and provides the input for the filter on BA7l7. Mid 1 band $E Q$ section output is taken from IC2d and is the input for the Mid 2 band EQ section (IC3a). The signal at this point has passed through both Low and Mid 1 band EQ sections in series, each of which operate without interacting.

MID 2 BAND EQ SECTION

The operation of this circuit is identical to that of the Mid 1 band section described above. It uses IC2b and c and RV3 ($0.8 \mathrm{kHz}-8 \mathrm{kHz}$) on BA717, IC3 a and b and RV3 (boost/cut) on BA716. Input is received frcm IC2c on BA716, the Mid 1 sections output. Output is sent from IC3b on BA716 to the input of the high band EQ section. At this point the signal has been operated on non-interactively by the Low, Mid 1 , and Mid 2 band $E Q$ sections.

The operation of this circuit is similar to that of the low band EQ section described above except that different outputs from the Two Integrator loop filter on BA717 (IC3 a - d) are used in order to achieve high pass shelving characteristics when selected by S2 on BA7l7. Amplifiers used on BA716 are IC3c and d. Input is received from IC3b on BA716, the Mid 2 EQ sections output. Output is sent from IC3c on BA716 back to the "IN" switch S2 on BA716. At this point the signal has been operated on by all four EQ sections in series, non- interactively.

LEVELS

The BA716/7 circuits are used at a nominal level of $-10 d B u$.
D.C. SUPPLIES

The BA716/717 EQ assembly runs from $\pm 18 \mathrm{~V}$ regulated power which it receives from the BA712/713 or BA752/753 assemblies via BA740.

TEST POINTS
Test points are provided as follows on BA716.
TPOV OV reference
TPI Channel path output from EQ
TP2 Mixdown path output from EQ
TP3 EQ input, after path selection and in/out
TP4 Signal after low-band EQ section
TP5 Signal after Mid 1 band EQ section
TP6 Signal after Mid 2 band EQ section
TP7 Signal after High band EQ section

(II) NEW PAGE ADDED.

DEL PIZIO4S

111	WR 71007
112	
113	
114	
115	
116	

